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FREE BOUNDARY CONTROL OF BROWNIAN MOTION
AND A RELATED OPTIMAL STOPPING PROBLEM

Michael I. Taksar*

Department of Statistics
Florida State University
Tallahassee, FL 32306

1. We consider a controlled stochastic linear system
Z =x+X +R -L (1)

Here X is a (u,oz)-— Brownian motion and R and L are the control functionals,
which are increasing and adapted to the o-field generated by the process X.

For the policy S = (L,R) the expected cost takes the form

1 -Y(s-t) T y(s~t)
Kg(x,t) = E{{h(zs,s]e Y ds + z{e dL .
T <v(s-t) (2)
+rfe dr__.}.

t

Here h, £ and r stand for holding cost and unit cost of displacement to the
left and to the right respectively, and vy > 0 is the discount factor. Our

objective is to characterize the optimal cost (the value function)
V*(x,t) = max Ks(x,t) (3)
S

and to describe the optimal policy S* = (L*,R*) for which V* = KS*' The

function V satisfies the Hamilton-Jacobi-Bellman equation (cf. (21
0 = min{g'v—a(%'-g + TV(x,t) - yV(x,t) + h(x,t),

DV(x,t) + r, -DV(x,t) + £},

(4)
0 =V(x,T),
where D = 2 and
X
32 3
F=’5025-;2*u§;- (5)

Our main technical assumptions are similar to the ones in [2]. We assume that

*Research supported by the Air Force Office of Scientific Research under
Grant Number F49620-85-C-0007.
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T( @ 3 (6)

h(x,t) is a nonnegative function such that there exists constants m and
0 € ¢ s C, such that for every x, x', t, t'
c|x|™ - € 5 hix,t) s ca+|x|™,

lh(x,t) - h(x',t)] < ca+]x|™e]x ™Yy [x - x'],

IA

(N
Ih(x,t) - hix,t")| s cQ+|x|™ |t - ¢},
2 .
0 < 2L (x,0) s ca+x|M, qa = @2,
9X

Theorem 1. Under the assumption (6), (7), there exists a unique solution V*
to the equation (4). This solution is the value function (3) of tlie control
problem (1), (2).

There exists an optimal policy S* = (L*,R*) for which V* = K. If

xi(t) min{x: DV(x,t) = £}

x3(t) max{x: DV(x,t) =-r}

then for Z; given by (1)

x;(x) < Z; < xi(s), (8)
and
|
1 dL* _ =0 %)
1 Z; < xi(s) s-t
T
{ f22 > xg(s)®s-t = 0

The above theorem shows that the optimal control consists of reflecting of the
control process Z* from time-dependent (a® priori unknown) boundary.
Let D = {(x,t): x5(t) sx < x;(t)}and let W = DV(x,t). By formally differen-

tiating (4) we get




aw (x,t) + IW(x,t} - yW(x,t) » H(x,t) = 0,

it 1
if (x,t) € D,

W(x,t) < r, for all x« R, 0 <t « T, t11
W(x,t) 2 -¢, for all xe R, 0 <« t - T, {121
W(x,T) = 0. {13

where all equalities and inequalities are understood in the sense of generalized

function.

Assume that H(0,t) = 0, i.e. 0 = argmin h(x,t). Consider the following

minnax problem (game of two persons)

TAGAT (s-t
W(x,t) = sup inf E{f e Y (s- )H(x+xs_t)ds
Tt (14)
-y(t-t) - re-Y(o-t)
+Le 1T<T1T<0 re ]o<T o<t

where sup is taken over all stopping times ¢ 2 t such that x + X0 ¢ < 0 and inf

is taken over all stopping times T 2 t such that x + X > 0.
T

Theorem 2. The optimal stopping game described above has value that is the
right hand side of (14) does not change if sup i¥f is replaced by igf Sup. The value

of the game W satisfies (10) - (13) and it relates to the value function V by

W= DV.

2. Suppose h does not depend on t and we consider an infinite horizon optimiza-
gl tion problem

RO V(x) = a?ﬁ E{ e-YS]](ZS) ds
(15)

< O 8

+?re— sts + Ze-stLs}
0 0

where Zs is given by (1) with t = 0.
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The Hamilton-Jacobi-Bellman equation for the value function V given by

{15) reduces to an ordinary differential equation with gradient constrains

0 = min{TV(x) - yV(x} + h(x), V'(x) + r,
(16)

£ - V' (x)}
In case of infinite horizon control, we can loosen the assumption on h, namely

. . 1 .
we assume that h is a nonnegative convex C° function and

|h'U)|*mas|x|+m. (1™

Theorem 3. Assume that (17) holds and r, £ > 0. Then there exists a unique
solution V*(x) to (16). There exists a unique optimal policy R*, L*. If

. dv* dv+
a= 1nf{x:3;—(x) > -t} and b = sup{x:a; (x) < £} then for all t > 0

*
a s Zt <b

where -* = + X + R* - L*, More
ere ¢ X : Lt Moreover

The above theorem shows that the optimal control in the infinite horizon problem
consists of keeping the controlled process Z* inside the interval [a,b] reflecting

it at the boundaries.

We want to establish the correspondence between optimal control problems
and game of optimal stopping of two persons. For simplicity, we assume that h
attains its minimum at point 0.
- Consider an optimal stopping game of two persons.

.43 TAB_Yt
:ﬂA W(x) = sup 1¥f E{ée h(x*Xt)dt
M (18)

-YT - YTI }

Vq + le 1 -re

<0 o<t




where sup is taken over all stopping times o such that x + X0 > 0 and inf is

taken over all stopping times 1t such that x + Xr< 0.

Theorem 4. The quantity in the right hand side of (18) does not change if
sup i¥f is changed to i¥f Sup. The value of the game W given by (18) is equal
to the derivative of V* given by (16). The optimal policies o* and t* in (18)

are given by

Q
*
"

inf{t: x+thb}

=
»
"

inf{t: x*XtZa}

where a and b are the same as in the theorem 3.
Similar results were obtained in [7] for the problem with average (per

unit of time) criterion.
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